3.1382 \(\int \frac{(g \cos (e+f x))^{3/2} \csc ^3(e+f x)}{a+b \sin (e+f x)} \, dx\)

Optimal. Leaf size=574 \[ -\frac{b^2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a^3 f}+\frac{b^{3/2} g^{3/2} \sqrt [4]{b^2-a^2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt{g} \sqrt [4]{b^2-a^2}}\right )}{a^3 f}-\frac{b^2 g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a^3 f}+\frac{b^{3/2} g^{3/2} \sqrt [4]{b^2-a^2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt{g} \sqrt [4]{b^2-a^2}}\right )}{a^3 f}+\frac{b g^2 \left (a^2-b^2\right ) \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b-\sqrt{b^2-a^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \left (a^2-b \left (b-\sqrt{b^2-a^2}\right )\right ) \sqrt{g \cos (e+f x)}}+\frac{b g^2 \left (a^2-b^2\right ) \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b+\sqrt{b^2-a^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \left (a^2-b \left (\sqrt{b^2-a^2}+b\right )\right ) \sqrt{g \cos (e+f x)}}-\frac{b g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \sqrt{g \cos (e+f x)}}+\frac{b g \csc (e+f x) \sqrt{g \cos (e+f x)}}{a^2 f}+\frac{g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{4 a f}+\frac{g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{4 a f}-\frac{g \csc ^2(e+f x) \sqrt{g \cos (e+f x)}}{2 a f} \]

[Out]

(g^(3/2)*ArcTan[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(4*a*f) - (b^2*g^(3/2)*ArcTan[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(a
^3*f) + (b^(3/2)*(-a^2 + b^2)^(1/4)*g^(3/2)*ArcTan[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])
])/(a^3*f) + (g^(3/2)*ArcTanh[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(4*a*f) - (b^2*g^(3/2)*ArcTanh[Sqrt[g*Cos[e + f*x
]]/Sqrt[g]])/(a^3*f) + (b^(3/2)*(-a^2 + b^2)^(1/4)*g^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2
)^(1/4)*Sqrt[g])])/(a^3*f) + (b*g*Sqrt[g*Cos[e + f*x]]*Csc[e + f*x])/(a^2*f) - (g*Sqrt[g*Cos[e + f*x]]*Csc[e +
 f*x]^2)/(2*a*f) - (b*g^2*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2])/(a^2*f*Sqrt[g*Cos[e + f*x]]) + (b*(a^2
 - b^2)*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(a^2*(a^2 - b*(b - Sq
rt[-a^2 + b^2]))*f*Sqrt[g*Cos[e + f*x]]) + (b*(a^2 - b^2)*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b + Sqrt[-a
^2 + b^2]), (e + f*x)/2, 2])/(a^2*(a^2 - b*(b + Sqrt[-a^2 + b^2]))*f*Sqrt[g*Cos[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 1.37029, antiderivative size = 574, normalized size of antiderivative = 1., number of steps used = 30, number of rules used = 18, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.546, Rules used = {2898, 2565, 321, 329, 212, 206, 203, 2567, 2642, 2641, 288, 2695, 2867, 2702, 2807, 2805, 208, 205} \[ -\frac{b^2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a^3 f}+\frac{b^{3/2} g^{3/2} \sqrt [4]{b^2-a^2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt{g} \sqrt [4]{b^2-a^2}}\right )}{a^3 f}-\frac{b^2 g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a^3 f}+\frac{b^{3/2} g^{3/2} \sqrt [4]{b^2-a^2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt{g} \sqrt [4]{b^2-a^2}}\right )}{a^3 f}+\frac{b g^2 \left (a^2-b^2\right ) \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b-\sqrt{b^2-a^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \left (a^2-b \left (b-\sqrt{b^2-a^2}\right )\right ) \sqrt{g \cos (e+f x)}}+\frac{b g^2 \left (a^2-b^2\right ) \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b+\sqrt{b^2-a^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \left (a^2-b \left (\sqrt{b^2-a^2}+b\right )\right ) \sqrt{g \cos (e+f x)}}-\frac{b g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \sqrt{g \cos (e+f x)}}+\frac{b g \csc (e+f x) \sqrt{g \cos (e+f x)}}{a^2 f}+\frac{g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{4 a f}+\frac{g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{4 a f}-\frac{g \csc ^2(e+f x) \sqrt{g \cos (e+f x)}}{2 a f} \]

Antiderivative was successfully verified.

[In]

Int[((g*Cos[e + f*x])^(3/2)*Csc[e + f*x]^3)/(a + b*Sin[e + f*x]),x]

[Out]

(g^(3/2)*ArcTan[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(4*a*f) - (b^2*g^(3/2)*ArcTan[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(a
^3*f) + (b^(3/2)*(-a^2 + b^2)^(1/4)*g^(3/2)*ArcTan[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])
])/(a^3*f) + (g^(3/2)*ArcTanh[Sqrt[g*Cos[e + f*x]]/Sqrt[g]])/(4*a*f) - (b^2*g^(3/2)*ArcTanh[Sqrt[g*Cos[e + f*x
]]/Sqrt[g]])/(a^3*f) + (b^(3/2)*(-a^2 + b^2)^(1/4)*g^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2
)^(1/4)*Sqrt[g])])/(a^3*f) + (b*g*Sqrt[g*Cos[e + f*x]]*Csc[e + f*x])/(a^2*f) - (g*Sqrt[g*Cos[e + f*x]]*Csc[e +
 f*x]^2)/(2*a*f) - (b*g^2*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2, 2])/(a^2*f*Sqrt[g*Cos[e + f*x]]) + (b*(a^2
 - b^2)*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(a^2*(a^2 - b*(b - Sq
rt[-a^2 + b^2]))*f*Sqrt[g*Cos[e + f*x]]) + (b*(a^2 - b^2)*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b + Sqrt[-a
^2 + b^2]), (e + f*x)/2, 2])/(a^2*(a^2 - b*(b + Sqrt[-a^2 + b^2]))*f*Sqrt[g*Cos[e + f*x]])

Rule 2898

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])
, x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b,
e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/2, 0])

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 2567

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a*Cos[e +
 f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1))/(b*f*(n + 1)), x] + Dist[(a^2*(m - 1))/(b^2*(n + 1)), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 2695

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + p)), x] + Dist[(g^2*(p - 1))/(b*(m + p)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] &&
NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]

Rule 2867

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2702

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, -Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[(b*g)/f, Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(g \cos (e+f x))^{3/2} \csc ^3(e+f x)}{a+b \sin (e+f x)} \, dx &=\int \left (\frac{b^2 (g \cos (e+f x))^{3/2} \csc (e+f x)}{a^3}-\frac{b (g \cos (e+f x))^{3/2} \csc ^2(e+f x)}{a^2}+\frac{(g \cos (e+f x))^{3/2} \csc ^3(e+f x)}{a}-\frac{b^3 (g \cos (e+f x))^{3/2}}{a^3 (a+b \sin (e+f x))}\right ) \, dx\\ &=\frac{\int (g \cos (e+f x))^{3/2} \csc ^3(e+f x) \, dx}{a}-\frac{b \int (g \cos (e+f x))^{3/2} \csc ^2(e+f x) \, dx}{a^2}+\frac{b^2 \int (g \cos (e+f x))^{3/2} \csc (e+f x) \, dx}{a^3}-\frac{b^3 \int \frac{(g \cos (e+f x))^{3/2}}{a+b \sin (e+f x)} \, dx}{a^3}\\ &=-\frac{2 b^2 g \sqrt{g \cos (e+f x)}}{a^3 f}+\frac{b g \sqrt{g \cos (e+f x)} \csc (e+f x)}{a^2 f}-\frac{\operatorname{Subst}\left (\int \frac{x^{3/2}}{\left (1-\frac{x^2}{g^2}\right )^2} \, dx,x,g \cos (e+f x)\right )}{a f g}-\frac{b^2 \operatorname{Subst}\left (\int \frac{x^{3/2}}{1-\frac{x^2}{g^2}} \, dx,x,g \cos (e+f x)\right )}{a^3 f g}+\frac{\left (b g^2\right ) \int \frac{1}{\sqrt{g \cos (e+f x)}} \, dx}{2 a^2}-\frac{\left (b^2 g^2\right ) \int \frac{b+a \sin (e+f x)}{\sqrt{g \cos (e+f x)} (a+b \sin (e+f x))} \, dx}{a^3}\\ &=\frac{b g \sqrt{g \cos (e+f x)} \csc (e+f x)}{a^2 f}-\frac{g \sqrt{g \cos (e+f x)} \csc ^2(e+f x)}{2 a f}+\frac{g \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (1-\frac{x^2}{g^2}\right )} \, dx,x,g \cos (e+f x)\right )}{4 a f}-\frac{\left (b^2 g\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (1-\frac{x^2}{g^2}\right )} \, dx,x,g \cos (e+f x)\right )}{a^3 f}-\frac{\left (b g^2\right ) \int \frac{1}{\sqrt{g \cos (e+f x)}} \, dx}{a^2}+\frac{\left (b \left (a^2-b^2\right ) g^2\right ) \int \frac{1}{\sqrt{g \cos (e+f x)} (a+b \sin (e+f x))} \, dx}{a^3}+\frac{\left (b g^2 \sqrt{\cos (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)}} \, dx}{2 a^2 \sqrt{g \cos (e+f x)}}\\ &=\frac{b g \sqrt{g \cos (e+f x)} \csc (e+f x)}{a^2 f}-\frac{g \sqrt{g \cos (e+f x)} \csc ^2(e+f x)}{2 a f}+\frac{b g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \sqrt{g \cos (e+f x)}}+\frac{g \operatorname{Subst}\left (\int \frac{1}{1-\frac{x^4}{g^2}} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{2 a f}-\frac{\left (2 b^2 g\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{x^4}{g^2}} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a^3 f}+\frac{\left (b \sqrt{-a^2+b^2} g^2\right ) \int \frac{1}{\sqrt{g \cos (e+f x)} \left (\sqrt{-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 a^2}+\frac{\left (b \sqrt{-a^2+b^2} g^2\right ) \int \frac{1}{\sqrt{g \cos (e+f x)} \left (\sqrt{-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 a^2}+\frac{\left (b^2 \left (a^2-b^2\right ) g^3\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (\left (a^2-b^2\right ) g^2+b^2 x^2\right )} \, dx,x,g \cos (e+f x)\right )}{a^3 f}-\frac{\left (b g^2 \sqrt{\cos (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)}} \, dx}{a^2 \sqrt{g \cos (e+f x)}}\\ &=\frac{b g \sqrt{g \cos (e+f x)} \csc (e+f x)}{a^2 f}-\frac{g \sqrt{g \cos (e+f x)} \csc ^2(e+f x)}{2 a f}-\frac{b g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \sqrt{g \cos (e+f x)}}+\frac{g^2 \operatorname{Subst}\left (\int \frac{1}{g-x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{4 a f}+\frac{g^2 \operatorname{Subst}\left (\int \frac{1}{g+x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{4 a f}-\frac{\left (b^2 g^2\right ) \operatorname{Subst}\left (\int \frac{1}{g-x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a^3 f}-\frac{\left (b^2 g^2\right ) \operatorname{Subst}\left (\int \frac{1}{g+x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a^3 f}+\frac{\left (2 b^2 \left (a^2-b^2\right ) g^3\right ) \operatorname{Subst}\left (\int \frac{1}{\left (a^2-b^2\right ) g^2+b^2 x^4} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a^3 f}+\frac{\left (b \sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)} \left (\sqrt{-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 a^2 \sqrt{g \cos (e+f x)}}+\frac{\left (b \sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)}\right ) \int \frac{1}{\sqrt{\cos (e+f x)} \left (\sqrt{-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 a^2 \sqrt{g \cos (e+f x)}}\\ &=\frac{g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{4 a f}-\frac{b^2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a^3 f}+\frac{g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{4 a f}-\frac{b^2 g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a^3 f}+\frac{b g \sqrt{g \cos (e+f x)} \csc (e+f x)}{a^2 f}-\frac{g \sqrt{g \cos (e+f x)} \csc ^2(e+f x)}{2 a f}-\frac{b g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \sqrt{g \cos (e+f x)}}-\frac{b \sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b-\sqrt{-a^2+b^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 \left (b-\sqrt{-a^2+b^2}\right ) f \sqrt{g \cos (e+f x)}}+\frac{b \sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b+\sqrt{-a^2+b^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 \left (b+\sqrt{-a^2+b^2}\right ) f \sqrt{g \cos (e+f x)}}+\frac{\left (b^2 \sqrt{-a^2+b^2} g^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-a^2+b^2} g-b x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a^3 f}+\frac{\left (b^2 \sqrt{-a^2+b^2} g^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-a^2+b^2} g+b x^2} \, dx,x,\sqrt{g \cos (e+f x)}\right )}{a^3 f}\\ &=\frac{g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{4 a f}-\frac{b^2 g^{3/2} \tan ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a^3 f}+\frac{b^{3/2} \sqrt [4]{-a^2+b^2} g^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt{g}}\right )}{a^3 f}+\frac{g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{4 a f}-\frac{b^2 g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{g \cos (e+f x)}}{\sqrt{g}}\right )}{a^3 f}+\frac{b^{3/2} \sqrt [4]{-a^2+b^2} g^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt{g}}\right )}{a^3 f}+\frac{b g \sqrt{g \cos (e+f x)} \csc (e+f x)}{a^2 f}-\frac{g \sqrt{g \cos (e+f x)} \csc ^2(e+f x)}{2 a f}-\frac{b g^2 \sqrt{\cos (e+f x)} F\left (\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 f \sqrt{g \cos (e+f x)}}-\frac{b \sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b-\sqrt{-a^2+b^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 \left (b-\sqrt{-a^2+b^2}\right ) f \sqrt{g \cos (e+f x)}}+\frac{b \sqrt{-a^2+b^2} g^2 \sqrt{\cos (e+f x)} \Pi \left (\frac{2 b}{b+\sqrt{-a^2+b^2}};\left .\frac{1}{2} (e+f x)\right |2\right )}{a^2 \left (b+\sqrt{-a^2+b^2}\right ) f \sqrt{g \cos (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 30.6175, size = 2129, normalized size = 3.71 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*Csc[e + f*x]^3)/(a + b*Sin[e + f*x]),x]

[Out]

((g*Cos[e + f*x])^(3/2)*((-2*a*b*(a + b*Sqrt[1 - Cos[e + f*x]^2])*((5*a*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4,
 Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[e + f*x]])/(Sqrt[1 - Cos[e + f*x]^2]*(5*(a^2 - b^
2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] - 2*(2*b^2*AppellF1[5/4, 1/2,
 2, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1, 9/4, Cos[e +
f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*Cos[e + f*x]^2)*(a^2 + b^2*(-1 + Cos[e + f*x]^2))) - ((1/8 - I/8)*
Sqrt[b]*(2*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]
*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] + Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[
e + f*x]] + I*b*Cos[e + f*x]] - Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]] +
 I*b*Cos[e + f*x]]))/(-a^2 + b^2)^(3/4)))/(Sqrt[1 - Cos[e + f*x]^2]*(b + a*Csc[e + f*x])) - (b^2*(-1 + Cos[e +
 f*x]^2)*(a + b*Sqrt[1 - Cos[e + f*x]^2])*Cos[2*(e + f*x)]*Csc[e + f*x]*((-10*Sqrt[2]*(2*a^2 - b^2)*ArcTan[1 -
 (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)])/(a*Sqrt[b]*(a^2 - b^2)^(3/4)) + (10*Sqrt[2]*(2*a^2 -
 b^2)*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)])/(a*Sqrt[b]*(a^2 - b^2)^(3/4)) - (20*
ArcTan[Sqrt[Cos[e + f*x]]])/a - (16*b*AppellF1[5/4, 1/2, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 +
b^2)]*Cos[e + f*x]^(5/2))/(-a^2 + b^2) - (200*b*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[e + f*x]^2, (b^2*Co
s[e + f*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[e + f*x]])/(Sqrt[1 - Cos[e + f*x]^2]*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1,
 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] - 2*(2*b^2*AppellF1[5/4, 1/2, 2, 9/4, Cos[e + f*x]^2,
 (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x
]^2)/(-a^2 + b^2)])*Cos[e + f*x]^2)*(a^2 + b^2*(-1 + Cos[e + f*x]^2))) + (10*Log[1 - Sqrt[Cos[e + f*x]]])/a -
(10*Log[1 + Sqrt[Cos[e + f*x]]])/a - (5*Sqrt[2]*(2*a^2 - b^2)*Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2
)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]])/(a*Sqrt[b]*(a^2 - b^2)^(3/4)) + (5*Sqrt[2]*(2*a^2 - b^2)*Log[Sqr
t[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]])/(a*Sqrt[b]*(a^2 - b^2)^
(3/4))))/(20*(1 - Cos[e + f*x]^2)*(-1 + 2*Cos[e + f*x]^2)*(b + a*Csc[e + f*x])) - (2*(-a^2 + 3*b^2)*(-1 + Cos[
e + f*x]^2)*(a + b*Sqrt[1 - Cos[e + f*x]^2])*Csc[e + f*x]*((5*b*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[e +
 f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[e + f*x]])/(Sqrt[1 - Cos[e + f*x]^2]*(5*(a^2 - b^2)*Appel
lF1[1/4, 1/2, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] - 2*(2*b^2*AppellF1[5/4, 1/2, 2, 9/4,
 Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1, 9/4, Cos[e + f*x]^2,
(b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*Cos[e + f*x]^2)*(a^2 + b^2*(-1 + Cos[e + f*x]^2))) - (-2*Sqrt[2]*b^(3/2)*A
rcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] + 2*Sqrt[2]*b^(3/2)*ArcTan[1 + (Sqrt[2]*Sqrt
[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] + 4*(a^2 - b^2)^(3/4)*ArcTan[Sqrt[Cos[e + f*x]]] - 2*(a^2 - b^2)^(3
/4)*Log[1 - Sqrt[Cos[e + f*x]]] + 2*(a^2 - b^2)^(3/4)*Log[1 + Sqrt[Cos[e + f*x]]] - Sqrt[2]*b^(3/2)*Log[Sqrt[a
^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]] + Sqrt[2]*b^(3/2)*Log[Sqrt[
a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]])/(8*a*(a^2 - b^2)^(3/4))))
/((1 - Cos[e + f*x]^2)*(b + a*Csc[e + f*x]))))/(4*a^2*f*Cos[e + f*x]^(3/2)) + ((g*Cos[e + f*x])^(3/2)*((b*Csc[
e + f*x])/a^2 - Csc[e + f*x]^2/(2*a))*Sec[e + f*x])/f

________________________________________________________________________________________

Maple [A]  time = 2.707, size = 312, normalized size = 0.5 \begin{align*}{\frac{1}{8\,af}{g}^{{\frac{3}{2}}}\ln \left ({ \left ( 4\,g\cos \left ( 1/2\,fx+e/2 \right ) +2\,\sqrt{g}\sqrt{-2\, \left ( \sin \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g+g}-2\,g \right ) \left ( -1+\cos \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{-1}} \right ) }-{\frac{g}{16\,af}\sqrt{-2\, \left ( \sin \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g+g} \left ( \cos \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) ^{-1}}+{\frac{1}{8\,af}{g}^{{\frac{3}{2}}}\ln \left ({ \left ( -4\,g\cos \left ( 1/2\,fx+e/2 \right ) +2\,\sqrt{g}\sqrt{-2\, \left ( \sin \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g+g}-2\,g \right ) \left ( \cos \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) +1 \right ) ^{-1}} \right ) }-{\frac{{g}^{2}}{4\,af}\ln \left ({ \left ( -2\,g+2\,\sqrt{-g}\sqrt{2\, \left ( \cos \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g-g} \right ) \left ( \cos \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{-1}} \right ){\frac{1}{\sqrt{-g}}}}+{\frac{g}{16\,af}\sqrt{-2\, \left ( \sin \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g+g} \left ( -1+\cos \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{-1}}-{\frac{g}{8\,af}\sqrt{2\, \left ( \cos \left ( 1/2\,fx+e/2 \right ) \right ) ^{2}g-g} \left ( \cos \left ({\frac{fx}{2}}+{\frac{e}{2}} \right ) \right ) ^{-2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(f*x+e))^(3/2)*csc(f*x+e)^3/(a+b*sin(f*x+e)),x)

[Out]

1/8/f*g^(3/2)/a*ln((4*g*cos(1/2*f*x+1/2*e)+2*g^(1/2)*(-2*sin(1/2*f*x+1/2*e)^2*g+g)^(1/2)-2*g)/(-1+cos(1/2*f*x+
1/2*e)))-1/16/f*g/a/(cos(1/2*f*x+1/2*e)+1)*(-2*sin(1/2*f*x+1/2*e)^2*g+g)^(1/2)+1/8/f*g^(3/2)/a*ln((-4*g*cos(1/
2*f*x+1/2*e)+2*g^(1/2)*(-2*sin(1/2*f*x+1/2*e)^2*g+g)^(1/2)-2*g)/(cos(1/2*f*x+1/2*e)+1))-1/4/f*g^2/a/(-g)^(1/2)
*ln((-2*g+2*(-g)^(1/2)*(2*cos(1/2*f*x+1/2*e)^2*g-g)^(1/2))/cos(1/2*f*x+1/2*e))+1/16/f*g/a/(-1+cos(1/2*f*x+1/2*
e))*(-2*sin(1/2*f*x+1/2*e)^2*g+g)^(1/2)-1/8/f*g/a/cos(1/2*f*x+1/2*e)^2*(2*cos(1/2*f*x+1/2*e)^2*g-g)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g \cos \left (f x + e\right )\right )^{\frac{3}{2}} \csc \left (f x + e\right )^{3}}{b \sin \left (f x + e\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*csc(f*x+e)^3/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*csc(f*x + e)^3/(b*sin(f*x + e) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*csc(f*x+e)^3/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))**(3/2)*csc(f*x+e)**3/(a+b*sin(f*x+e)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (g \cos \left (f x + e\right )\right )^{\frac{3}{2}} \csc \left (f x + e\right )^{3}}{b \sin \left (f x + e\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)*csc(f*x+e)^3/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate((g*cos(f*x + e))^(3/2)*csc(f*x + e)^3/(b*sin(f*x + e) + a), x)